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SUMMARY 

A numerical study has been conducted to  determine the heat transfer characteristics and flow patterns which 
develop around a rotating, heated vertical cylinder enclosed within a stationary concentric cylinder. A tall 
annulus (aspect ratio of 10) with fixed, adiabatic horizontal end-plates and a radius ratio of 0.5 has been 
considered. Furthermore, the effect that the introduction of buoyancy forces by heating the inner cylinder has 
on the development of the Taylor vortex flow is examined. It is observed that the formation of the Taylor 
vortices is delayed until the rotational parameter o = Gr/Re2 has a value below unity for any given Reynolds 
number Re which is above the critical value Recri, for the formation of Taylor vortices in an isothermal flow. 
Also, the Taylor cells first appear at the top of the annulus. As o is gradually decreased below unity, 
bifurcations to other states are observed. The final structure of the secondary flow is noticeably distorted in 
the mixed-convection mode, with the size of the Taylor cells varying greatly along the height of the annulus. 
This distortion diminishes as o is further decreased, until the isothermal flow pattern is nearly recovered below 
o = 0.01. 
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INTRODUCTION 

Heat transfer from rotating cylindrical bodies occurs in many practical applications, such as the 
cooling of turbine rotors or electrical motor shafts. Other applications include the cooling of high- 
speed gas bearings, rotating condensers for sea-water distillation, and spacecraft power plants.' 
These flows also have many geophysical applications, including oceanic and atmospheric 
circulation, and hence play important roles in developing weather patterns.' 

A more recent and direct application of this research is improvement in the techniques of 
chemical vapour deposition (CVD). CVD is an important process often used in semiconductor 
device fabrication. During this process, the solid products of a vapour phase chemical reaction are 
deposited on a substrate as a thin film. In one of the more common reactors, the barrel reactor, the 
substrate is placed on a rotating turret which is enclosed within a bell jar. One of the major factors 
governing the deposition process is the flow characteristics of the hot gases over the rotating 
t ~ r r e t . ~  

In the study of the flow between rotating cylinders, the existence of hydrodynamic instabilities 
also provides a more fundamental objective: the understanding of how and under what 
circumstances turbulence may arise from laminar instability. Instabilities in laminar flow are often 
a prelude to transition to turbulence. Because of the wide range of Reynolds (Taylor) numbers for 
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which the Taylor-vortex flow remains stable, it affords the researcher much insight into the growth 
of disturbances leading to t~ rbu lence .~  

The Taylor-vortex instability has been the subject of much research. G. I. Taylor showed that a 
critical speed of rotation exists above which appears a stable, secondary mean flow consisting of 
regularly spaced toroidal vortices (Taylor vort ice~) .~ Coles6 provided a strong experimental study 
considering a wide range of parameters and flow regimes. Much of the existing analytical work and 
stability analyses is discussed by Chandra~ekhar .~ Recent studies of the Taylor problem have 
concentrated on the existence of multiple solutions, which have secondary states characterized by a 
unique wavelength.8-'6 The wavelength that is selected as the primary state depends upon the 
initial conditions of the flow.16 Of these studies, those of Benjamin and Mullin8q9 have provided 
many experimental results revealing the nature of the Taylor cell evolution. Numerical studies by 
Cliffe" have verified these results and have helped to provide further insights in their meaning. A 
recent numerical study by Hughes et al.' ' has successfully predicted some of the observed 
secondary flows in the Taylor experiment. 

Comparatively little work has been directed toward the study of the mixed-convection flows 
in a heated vertical cylindrical annulus with the inner cylinder rotating. This flow remains 
axisymmetric for a wide range of both the Reynolds and Grashof numbers, and is therefore 
readily accessible to numerical solution. Snyder and Karlsson' 7-19 present experimental 
observations for the small-gap annulus (d = 0.267 cm, with 2d/(ri + r , )  << 1) with a radial thermal 
gradient imposed upon the flow. They report that a spiral form of the Taylor-vortex flow occurs 
when the gradient across the gap, A Tld, exceeds 5 O C/cm. This criterion for an axisymmetric 
flow was observed for the small-gap case. In the present study, the thermal gradients encountered 
were of the order of I"C/cm across the 5cm gap. It is expected that the present flow will 
also remain axisymmetric, since the critical Taylor number increases with increasing gap width 
(i.e. the flow becomes more stable). de Vahl Davis and co-workers20*21 have also studied this 
problem, concentrating on the overall flow patterns and heat transfer rates, for short and moderate 
aspect ratios (r = 1 and 

In this paper, a tall annulus is considered (r = lo), with particular emphasis on the stability 
of the flow, the mutual interaction of both the buoyancy and rotational effects (qualified by the 
rotational parameter G = Gr/Re2) ,  and the subsequent effect on the flow patterns, heat transfer 
rates and transition criteria. 

Multiple solutions are seen to exist for the mixed-convection problem. Since the amplification 
process of instabilities has a strong influence on the final result, a study of the evolution of 
Taylor vortices can reveal insights into the dynamical selection process.15 It is known that the 
amplification process in natural convection flows has distinct differences from that in pressure- 
driven flows,22 and a study of the evolution of Taylor vortices in a mixed-convection flow can help 
to determine the intcraction between the buoyancy and centrifugal forces. 

= 3). No information regarding flow bifurcation was given. 

MATHEMATICAL FORMULATION 

The geometry considered consists of a smooth, heated isothermal vertical cylinder of radius ri 
enclosed by a concentric isothermal cylinder of radius r,  to form an annulus. The annulus is 
capped by smooth, adiabatic horizontal end-plates. Both the outer cylinder and the end-plates 
are fixed and stationary, whereas the inner cylinder is allowed to rotate. The geometry is specified 
by the radius ratio v]  = ri/ro and the aspect ratio r = H / d ,  where d is the gap width r,  - ri .  

The fluid considered is air, with P r  = 0.7. The usual Boussinesq approximation is applied. The 
Boussinesq approximation remains valid in rotating flows when the centrifugally induced pressure 
difference effects on the density may be neglected. The criterion used to determine this is that the 
acceleration ratio A,  defined as the ratio of the characteristic centrifugal acceleration to the 
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acceleration due to gravity, should be small compared to unity: 

A = ( 0 2 r i ) / g  << 1. 

For all results presented, A < 0.03. 

Governing equations 

The Navier-Stokes and energy equations, together with the continuity equation, completely 
describe the physics of the problem. In cylindrical polar co-ordinates, for an axisymmetric flow, the 
equations are 

-++-++-++- av av av V )  = p  ( a 2 ,  -+----+- i a v  a 2 v )  
at ar aZ r ar2 r ar r2  az2 ’ 

au u aw -+ -+ -= 0. 
ar r az 

The equations (2)-(4) are cast into the stream-function-vorticity form by introducing the 
stream function II/ and vorticity cu as follows: 

The equations are made dimensionless by using the gap width d as the length scale, d 2 / v  as the 
time scale (where v is the kinematic viscosity), and the temperature difference (Ti - To). 

Boundary conditions 

The value of the stream function II/ along all boundaries must be a constant, owing to the no-slip 
condition at an impermeable wall. This value is taken to be zero. The swirl velocity component is 
equal to zero at the end-plates and the outer cylinder, which are stationary. The inner cylinder 
rotates with an angular speed of R(s-’). The non-dimensional temperature is T =  1 at the inner 
wall and T=O at the outer wall (which are both isothermal). Both end-plates are taken to be 
adiabatic. An expression for the vorticity boundary condition can be obtained by expanding the 
stream function near the surface using a three-term Taylor series expansion and by making use of 
the continuity and no-slip conditions: 

where $,, is the value of @ at the near-wall node (adjacent to the wall), An is the non-dimensional 
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distance of the near-wall node from the wall, and r ,  is the value of the radial co-ordinate at the 
wall node being calculated. 

Solution procedure 

The resulting four coupled elliptic equations (for stream function, vorticity, swirl velocity and 
temperature) are transformed into difference equations by using a control-volume-based finite 
difference method. A line-by-line tridiagonal matrix algorithm is employed for the solution of the 
discretized equations. A 1 1  1 x 21 ( z  x r )  grid is used for the numerical computations with uniform 
spacing in the z direction and non-uniform spacing in the radial direction. A fully implicit scheme 
was used to obtain the transient solutions. All computations were performed on a VAX-11/750 
computer. 

RESULTS AND DISCUSSION 

Solutions are obtained for a wide range of the Grashof number (0 < Gr < lo5)  with the Reynolds 
number held fixed at Re = 100. This value of Re corresponds to a Taylor number Tu = 9.93 x lo4, 
which is well above the theoretical value Tacri, = 3.310 x lo4 for this g e ~ m e t r y . ~  The correspond- 
ing range of the rotational parameter 0 = Gr/Re2 is 0 0  < 0 < 10. This parameter is a densiometric 
Froude number, and gives the relative importance of the buoyancy and rotational effects. The flow 
characteristics are found to be primarily dependent on 0. The problem geometry is shown in 
Figure 1. 

Solutions are presented first for the isothermal flow case (Gr = 0 = 0). Below a critical Reynolds 
(Taylor) number, the flow is essentially one-dimensional, consisting of concentric circular 
streamlines in the ( r - 4 )  plane. The u and w components of velocity (in the r and z directions) are 

r 

Figure 1. Problem geometry 
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Figure 2. (a) Streamlines, f A$ = 1.1, and (b) vorticity field, f Am = 37.2, for Re = 100, n = 0.0 

essentially zero, although a very slight circulation is induced in the (r-z) plane due to the vorticity 
introduced into the flow by the stationary end-plates. Above a critical Reynolds (Taylor) number, 
the flow undergoes a transition to a quasi-three-dimensional (axisymmetric) flow characterized by 
counter-rotating toroidal vortices (Taylor vortices) in the (r-z) plane. Figure 2 shows the computed 
steady-state streamlines and vorticity field for the case 0 = 0. It is noted that five pairs of counter- 
rotating cells are present, corresponding to a non-dimensional wave number a = m , / A  = 6.283. 
This compares quite well to the value found for an infinitely long annulus of a = 6.4.’ 

Steady-state results showing the onset and subsequent development of the secondary flow as 0 is 
gradually varied are shown next. First, the steady-state solution for the case c = 10 was found, with 
the heating and rotation of the inner cylinder started impulsively. Then, 0 was gradually reduced, 
using the results of the previous run as initial conditions. All of the results for 0 > 1.0 closely 
resemble the pure natural convection flow patterns (with Re = 0). These results are discussed in a 
previous The first appearance of a Taylor vortex occurred at c = 1.0, and can be seen at the 
top of the annulus in Figure 3. The secondary flow for this state consists of a large vortex rotating in 
the positive sense, with a small counter-rotating (negative) vortex at  the top of the annulus. For the 
sake of clarity in this discussion, a vortex will be considered to have a positive sense when its 
rotation is in the same sense as the natural convection flow, i.e. when the flow immediately adjacent 
to the heated inner cylinder is in the upward (positive z )  direction. At c = 1.0, the buoyancy still 
dominates the flow, and thus the positive vortex is much larger than the upper negative vortex. The 
negative vortex is the first manifestation of the presence of the Taylor instability. 

The next bifurcation in the flow, from a one-pair to a three-pair Taylor cell state, occurs at 
0 = 01.  The three-pair state is shown in Figure 4. In each of the three pairs of counter-rotating 



- a54 

2 72 

- 0. 

- 0. 

0. - 

--/037. 

1. 

Figure 3. (a) Streamlines, A$ = 6.8, - A$ = 0.1 1, (b) vorticity field, + Am = 70.2, - AUJ = 207.5, and (c) temperature 
field, AT= 0.1 for Re = 100, c = 1.0 
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Figure 4. (a) Streamlines, + A$ = 1.4, - A$ = 0.74, (b) vorticity field, + AUJ = 32.5, - Am = 36.7, and (c) temperature field, 
AT=0.1 for R e =  100, g=O.l  
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cells, the positive cell is much larger. This is due to the influence of the buoyancy force. Even 
at o = 0.1, the tendency of the warmer fluid particles adjacent to the heated inner cylinder to rise 
is sufficiently strong to overcome the regular spacing characteristic of the Taylor instability. 
Furthermore, it is significant that the positive cell is the larger cell. Referring back to Figure 2, 
it is observed that the cell at the top of the annulus has a negative sense, whereas the bottom 
cell has a positive sense. When buoyancy is introduced into the flow, the extra vorticity induced 
by the natural convection circulation assists the positive Taylor cells, causing them to grow, 
while at the same time reducing the magnitude of the vorticity of the negative Taylor cells, which 
diminish in size. Hence, the bottom cell is expected to grow, while the top cell remains small, 
as the influence of buoyancy (characterized by o) increases. 

In Figure 4, it is also observed that each pair of counter-rotating cells occupies the same volume; 
namely, one-third of the annulus. In the bottom two pairs, the positive cell is approximately 4.75 
times as large as the negative cell. However, the uppermost pair of cells has a size ratio of 2.46. This 
is due to the fact that the magnitude of the buoyancy-induced vorticity is relatively small at  the top 
of the annulus (compared to the middle where it reaches a maximum). Thus, the negative vorticity 
induced by the Taylor instability at the top of the annulus is diminished the least by the buoyancy 
there (which induces vorticity with a positive sense). This also explains why the first appearance 
of a Taylor cell occurs at  the top of the annulus, as shown in Figure 3, in contrast to the 
isothermal case. In the isothermal flow, the Taylor cells develop from Ekman rolls, which grow 
from both ends of the annulus and eventually meet in the centre to form a flow pattern which 
is symmetric about the mid-plane.8,'2,'3 

It is interesting to note that a stable, two-pair Taylor cell state was never observed. This can also 
be explained by observing the interaction of the vorticity induced by the buoyancy forces with the 
vorticity resulting from the Taylor instability. Since the positive vorticity induced by the buoyancy 
forces alone reaches a maximum near the mid-plane of the annulus, a negative Taylor cell would be 
unlikely to develop there. The three-pair state which does develop thus represents a lower energy 
state than the two-pair mode. 

The next bifurcation in the flow, from a three-pair to a four-pair Taylor cell state, occurs just 
below o = 0.1. The four-pair state persists down to o = 0.05, where it is replaced by the five-pair 
state characteristic of the isothermal flow. Below o = 0.05, the flow is dominated by the rotational 
forces, and the buoyancy has very little effect on the flow. The four-pair and five-pair Taylor cell 
states are shown in Figures 5 and 6, respectively. 

In Figures 3(c)-6(c), the effect of the secondary flow on the temperature distribution is plainly 
seen. The counter-rotating Taylor vortices greatly assist the transport of fluid across the annular 
gap. The mean equivalent conductivity E,,  is a measure of the effectiveness of the heat-transport 
mechanism. The variation ofk,, with c i s  shown in Figure 7. The higher wave-number states clearly 
have a more effective transport mechanism. Hence, the expected decrease in E, ,  with o is 
dramatically changed at each bifurcation to a different state. Figure 7 thus reveals the bifurcation 
behaviour of the flow with respect to variations in the rotational parameter o. 

The development of the Taylor vortices in the mixed-convection mode with time, with 
impulsively started heating and rotation, closely parallels the evolution of the secondary flow with 
decreasing values of o. Figure 8 shows the development of the flow for o = 0.1 at different times, 
identified by the Fourier number Fo. It is observed that the Taylor cell structure also develops at 
the top of the annulus. Since the Prandtl number for air, Pr = 0.7, is less than unity, the buoyancy 
forces dominate the flow for small values of Fo. As the flow develops with increasing time, the 
relatively slower diffusion of momentum eventually dominates the flow, and the three-cell structure 
is observed after a sufficient period of time. 



Figure 5 .  (a) Streamlines, + A$ = 1.3, - A $  = 0.89, (b) vorticity field, + Am = 32.5, - A u  = 36.7, and (c) temperature field, 
AT= 0.1 for Re = 100, u = 0.05 

0. 

1. 0. 

Figure 6. (a) Streamlines, + A $  = 1.1, - A$ = 1.0, (b) vorticity field, 2 ACO = 36.8 and (c) temperature field, A T =  0.1 for 
Re = 100, u = 0.01 
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Figure 8. Streamlines showing the transient development of the flow for Re = 100, u = 0.1: (a) Fo = 0.00618, 
(b) FO = 0.5562, (c) FO = 1.9208 
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CONCLUSION 

In this paper, the effects that the introduction of buoyancy has on the development of the Taylor- 
vortex flow have been studied. Several important conclusions have been reached. First, the 
formation of the Taylor vortices is suppressed by the buoyancy for values of the rotational 
parameter cr = Gr/Re2 greater than unity. Below cr = 1.0, Taylor vortices first appear, with the cells 
developing at the top of the annulus. As the parameter IS is slowly decreased, a succession of 
different states, characterized by distinct (and increasing) wave numbers, is found to exist. In the 
mixed-convection region (001 < cr < 1.0), a ‘distorted’ form of the Taylor cells is observed, with the 
cell rotating in the same sense as the natural convection circulation (the positive cell) being larger 
than the other cell in the counter-rotating pair. As cr was decreased below cr = 0.01, the isothermal 
flow patterns were eventually recovered. 
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NOMENCLATURE 

non-dimensional wave number ( = nr,/A) 
acceleration ratio (= R2ri/g) 
specific heat 
gap width (= ro - T i )  

Fourier number (= tv/d2) 
Grashof number (= d3/?g( Ti - T, ) / v* )  
heat transfer coefficient 
height of annulus 
thermal conductivity 
local equivalent conductivity ( = (hr /k )  In (rolli)) 
mean equivalent conductivity 
Prandtl number ( = v/a) 
cylinder radius 
rotational Reynolds number (= riQd/v) 
time 
temperature 
Taylor number (=  4R2rf/(v(1 - v ’ ) ) ~ )  
thermal diffusivity (= k / p c , )  
thermal coefficient of volumetric expansion 
aspect ratio (= H/d) 
radius ratio (= ri/ro) 
wavelength of Taylor cells (axial length of a single cell) 
viscosity 
kinematic viscosity (= p / p )  
density 
densiometric Froude number (= Gr/Re2)  
stream function 
vorticity 
angular speed of rotation of inner cylinder (rad/sec) 

Subscripts 

crit critical values. 
i 
o 

conditions applying at inner cylinder 
conditions applying at outer cylinder 
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